395 research outputs found

    The value of a novel percutaneous lung puncture clamp biopsy technique in the diagnosis of pulmonary nodules

    Get PDF
    Abstract Background: Computed tomography-guided percutaneous lung biopsy is a crucial method to determine pulmonary anomalies, and is highly accurate in detecting evidence of malignancies, allowing medical practitioners to identify the stage of malignancy and thus help to plan the treatment regimens of patients.Objective: To explore the clinical application of a new computed tomography-guided percutaneous lung puncture clamp biopsy technique in the diagnosis of pulmonary nodules, characterized by ground-glass opacity on chest computed tomography images.Methods: A unique instrument named ‘combined percutaneous lung biopsy forceps’, consisting of a biopsy forceps, a 15-gauge coaxial needle and needle core, was designed. The new tool was used to obtain specimens in nine patients with pulmonary ground-glass opacity. The specimen volumes and the safety of using the instrument were measured. The samples obtained were also assessed to see if they were sufficient for conducting histological tests.Result: Samples were obtained in all nine patients – a success rate of 100%. Consistently, the volume of each specimen was sufficient to make a histological diagnosis. No serious complications, such as pneumothorax – primary spontaneous pneumothorax or secondary spontaneous pneumothorax – occurred during the biopsy.Conclusions: The application of this new tool in obtaining tissue specimens in patients with pulmonary ground-glass opacity under the guidance of chest computed tomography was invaluable in terms of its high accuracy and safety. Moreover, its effect was better compared to using a fine-needle aspiration biopsy or a cutting-needle biopsy. Therefore, this instrument can be used for histological diagnosis. [Ethiop. J. Health Dev. 2021; 35(2):85-90]Key words: Ground-glass opacity; percutaneous lung puncture clamp biopsy; fine-needle aspiration biopsy; cutting-needle biops

    Multivariate Time Series Similarity Searching

    Get PDF
    Multivariate time series (MTS) datasets are very common in various financial, multimedia, and hydrological fields. In this paper, a dimension-combination method is proposed to search similar sequences for MTS. Firstly, the similarity of single-dimension series is calculated; then the overall similarity of the MTS is obtained by synthesizing each of the single-dimension similarity based on weighted BORDA voting method. The dimension-combination method could use the existing similarity searching method. Several experiments, which used the classification accuracy as a measure, were performed on six datasets from the UCI KDD Archive to validate the method. The results show the advantage of the approach compared to the traditional similarity measures, such as Euclidean distance (ED), cynamic time warping (DTW), point distribution (PD), PCA similarity factor SPCA, and extended Frobenius norm (Eros), for MTS datasets in some ways. Our experiments also demonstrate that no measure can fit all datasets, and the proposed measure is a choice for similarity searches

    A review of the methanol economy:The fuel cell route

    Get PDF
    This review presents methanol as a potential renewable alternative to fossil fuels in the fight against climate change. It explores the renewable ways of obtaining methanol and its use in efficient energy systems for a net zero-emission carbon cycle, with a special focus on fuel cells. It investigates the different parts of the carbon cycle from a methanol and fuel cell perspective. In recent years, the potential for a methanol economy has been shown and there has been significant technological advancement of its renewable production and utilization. Even though its full adoption will require further development, it can be produced from renewable electricity and biomass or CO2 capture and can be used in several industrial sectors, which make it an excellent liquid electrofuel for the transition to a sustainable economy. By converting CO2 into liquid fuels, the harmful effects of CO2 emissions from existing industries that still rely on fossil fuels are reduced. The methanol can then be used both in the energy sector and the chemical industry, and become an all-around substitute for petroleum. The scope of this review is to put together the different aspects of methanol as an energy carrier of the future, with particular focus on its renewable production and its use in high-temperature polymer electrolyte fuel cells (HT-PEMFCs) via methanol steam reforming

    Long-term whole blood DNA preservation by cost-efficient cryosilicification

    Get PDF
    This work was supported by the National Natural Science Foundation of China (21972047 to W.Z., 52003086 to Q.L.), Guangdong Provincial Pearl River Talents Program (2019QN01Y314 to Q.L.), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2019ZT08Y318 to W.Z.), Natural Science Foundation of Guangdong Province, China (2021A1515010724 to Q.L.), China Postdoctoral Science Foundation (2020M672625, 2021T140213 to Q.L.), Science and Technology Project of Guangzhou, China (202102020352 to W.Z., 202102020259 to Q.L.), the Fundamental Research Funds for the Central Universities of China. The authors thank the support from the Guangzhou Women and Children’s Medical Center and Laboratory Animal Research Center of the South China University of Technology. S.W. acknowledges funding from the Basque Government Industry Department under the ELKARTEK and HAZITEK programs.Deoxyribonucleic acid (DNA) is the blueprint of life, and cost-effective methods for its long-term storage could have many potential benefits to society. Here we present the method of in situ cryosilicification of whole blood cells, which allows long-term preservation of DNA. Importantly, our straightforward approach is inexpensive, reliable, and yields cryosilicified samples that fulfill the essential criteria for safe, long-term DNA preservation, namely robustness against external stressors, such as radical oxygen species or ultraviolet radiation, and long-term stability in humid conditions at elevated temperatures. Our approach could enable the room temperature storage of genomic information in book-size format for more than one thousand years (thermally equivalent), costing only 0.5 $/person. Additionally, our demonstration of 3D-printed DNA banking artefacts, could potentially allow 'artificial fossilization'.Publisher PDFPeer reviewe
    • …
    corecore